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I .  Introduclon 
Discrete mathematics is a branch of mathematics 

which deals with the properties of sets that can be 
mapped into a set of integers. The objects of discrete 
sets are countable, and they can be labeled by integers. 
For example, a set of apples is discrete in the sense that 
the apples in this set can be labeled A,, A,, etc. On the 
contrary the set (0.1) which represents the set of real 
numbers in the open interval between 0 and 1 cannot 
be mapped into a set of integers. A few mathematicians 
consider discrete mathematics and combinatorics syn- 
onymous. This is not unrealistic if one defines com- 
binatorics in such a way that it encompasses all the 
facets of the study of discrete structures. Even though 
the definition of discrete mathematics mentioned above 
is precise, it does not satisfactorily describe the various 
facets of discrete mathematics. When the new journal 
of discrete mathematics was established in 1971, it 
stated that the fields covered by the journal would in- 
clude Boolean algebra and applications, coding theory, 
combinatorial geometries, combinatorics and combi- 
natorial structures, computational complexity, discrete 
aspects of mathematical programming and operations 
research, discrete models in Biology, discrete proba- 
bilities, extrema1 set theory, finite algebras, games, 
graphs, hyper graphs, integer programming, logic and 
automata, mathematical linguistics, matrices, networks, 
statistical mechanics, and related topics. 

Consider one of the most important branches of 
discrete mathematics, namely combinatorics or com- 
binatorial mathematics. It appears that a satisfactory 
definition of this area is not found in the literature even 
though one understands what it means. Berge' defines 
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combinatorics as a science which counts, enumerates, 
examines, and investigates the existence of 
"configurations" with certain specified properties. A 
configuration is defined as a mapping of objects into 
a finite abstract set with a given structure. For exam- 
ple, a permutation of n objects is a one-to-one mapping 
of the objects of the set to the ordered set I1,2, ..., n} 
if there are n objects in the set under consideration. 
Combinatorics evolved by finding methods or algor- 
ithms for enumerating configurations (instead of ex- 
ecuting the experiment with desired specifications by 
brute force). One such method is the generating 
function method discovered by Laplace although it 
appears that it was conceived by Euler earlier. The 
binomial expansion (1 + x)" can be thought of as a 
generating function for (:) since the coefficient of x' in 
(1 + x)' is (:). Thus to obtain the number of ways of 
choosing r objects out of n objects, one looks a t  the 
coefficient of x' in (1 + x)" (instead of actually choosing 
these objects and finding how many such ways exist). 
The subject evolved to a considerable extent through 
the problems posed by other branches of science which 
ask for such counting techniques. Chemistry seems to 
have been a fertile ground for the development of some 
most important combinatorial techniques. Cayley2" 
showed the correspondence between enumerating the 
isomers of organic molecules of the formula C,H,+Z and 
enumerating trees. P61ya6 published an important and 
classical paper on what is now well-known as P6lya's 
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vertices i and j connected in the diagram if the ijth 
matrix element is 1. The extension of this represent- 
ation to other ab initio Fock matrices would be edge- 
weighted diagrams with the weights of the edges rep- 
resenting matrix elements. The usefulness of weighted 
diagrams have not been explored in great depth in 
chemical literature. However, a number of papers have 
dealt with the applications of ordinary (nonweighted) 
graphs to Huckel theory, extended Huckel theory, 
electronic structure of polymers, etc. Some of these 
works will be reviewed in this manuscript in the section 
on applications to quantum chemistry. 

A classical example of a problem soluble using graph 
theory in chemical physics is the well-known Ising 
problem. The problem is to obtain the partition 
function (and hence the thermodynamic behavior) of 
a lattice of interacting ferromagnets with nearest- 
neighbor interaction. The problem is soluble for a 
one-dimensional lattice, and Onsager solved the two- 
dimensional problem. The correspondence between the 
Ising problem and a graphical problem known as the 
dimer covering problem on a "bathroom tile lattice" is 
well known.108J09 The dimer covering problem asks for 
the number of ways of forming dimers on a lattice of 
points where a dimer is a set of two vertices connected 
by an edge. 

The dimer covering problem has another important 
application in the estimation of the resonance energy 
of aromatic hydrocarbons. It turns out that the number 
of possible Kekul6 structures of a polycyclic aromatic 
hydrocarbon is given by the number of dimers that can 
be formed with the molecular graph of the aromatic 
hydrocarbon. For an elementary review of this topic, 
see Herndon's paper.l'O Numerous papers have ap- 
peared in the chemical literature that deal with graph 
theory, aromaticity, dimer coverings, e t ~ . l ' l - ' ~ ~  An in- 
timately connected generating function for dimers is 
called matching polynomial. The coefficient of a par- 
ticular term in the matching polynomial enumerates the 
number of ways of placing a given number of dimers 
on a lattice (partial covering of dimers). Methods and 
computer programs have been developed to construct 
the matching polynomials of very complicated graphs 
by the present investigator and co-w~rkers.'~~ The topic 
of topological approach to the chemistry of conjugated 
molecules was reviewed by Graovac, Gutman and 
Tr ina j~ t iE '~~  and more recently by Trinaj~tiE. '~~ 

Graph theory is useful in simplifying certain integrals 
which appear in the partition function using the May- 
er-Mayer expansion.16* To obtain the partition func- 
tion of a system of N classical monoatomic particles in 
a volume V, one has to evaluate the integrals over 
momentum and position space. It turns out that the 
integrals over momentum space can be rather easily 
evaluated in comparison to the integrals over position 
variables which remain a bottleneck of many problems 
in statistical mechanics since the latter involve the in- 
teractions between particles i and j which depend on 
the separation between them. It is thus impossible to 
obtain the partition function exactly for these many- 
body systems. Nevertheless, one can classify these in- 
teractions according to certain criteria and include only 
those terms that are significant. Mayer and Mayer 
expanded the partition function as a series and each 
term in the series can be represented by a graph (known 

theorem which was anticipated by Redfield7 earlier. 
This theorem provides generating functions for the 
enumeration of configurations under group action in 
terms of what is known as the cycle index of a group. 

Since the development of this celebrated Pblya's 
theorem numerous papers have appeared in both 
chemical and mathematical literatures-77 which deal 
with several ramifications of this theorem and other 
methods and their applications to chemical problems. 
The chemical applications of Pblya's theorem include 
enumeration of stereoisomers, positions isomers, geo- 
metrical isomers of inorganic compounds, enumeration 
of labeled compounds, enumeration of NMR signals,56@ 
enumeration of electron-rich and electron-poor Boron 
compounds, enumeration of electronic configurations 
in configuration interaction, etc. 

Isomer enumeration and related topics were reviewed 
by R o u ~ r a y . ~ ~ ~ ~ ~  We will not describe in details the 
various topics covered in these references. Interested 
readers are referred to ref 28 and 29 and some of the 
papers of the present author for recent develop- 

The other important aspect of combinatorics is the 
problem of the existence of a configuration. It is this 
aspect that led to the celebrated problem of the seven 
bridges of the town of Konigsberg which can be con- 
sidered as the first pioneering problem that developed 
the theory of graphs. The problem was to stroll across 
the seven bridges connecting four land areas exactly 
once and return to the starting point. Euler showed 
that the problem is insoluble by representing each land 
area by a vertex of a graph and each bridge by an edge 
connecting the vertices. These types of investigations 
can be found as early as 2200 B.C., for example, in the 
divinatory book used in China by the lesser Taoists. 
This work describes two configurations, namely, the 
grand plan and the river map. (See Berge,' for more 
details.) 

Graph theory has developed into a subject in itself 
with a variety of applications. A graph is simply a 
diagram with vertices connected by edges. If the ver- 
tices represent atoms and the edges represent chemical 
bonds, then the associated graph is a representation of 
a molecule. The use of such connection diagrams goes 
back to ancient chemists such as Kekul6 and mathe- 
maticians like Cayley, who used trees to represent al- 
kanes. The vertices of a graph may represent certain 
reactive species or isomers and the edges being possible 
reactions or isomerizations. Then the associated graph 
may be called isomerization or reaction graph. The 
construction of isomerization graphs, their properties, 
and important applications to stereochemistry have 
been discussed in a number of  publication^.^^-'^^ The 
scope of our present review does not permit to include 
extensive discussions on this topic. 

Graphs are representations for quantum mechanical 
Hamiltonians, interactions, etc. An example of such a 
diagram is the Feynman diagram." A nonweighed 
ordinary graph is a representation of the Huckel Ham- 
iltonian matrix of r-electronic systems.lo7 It can be 
shown that the Huckel matrix can be transformed to 
a topological or adjacency matrix which is simply a 
matrix of connectivity information. The topological 
representation of such a matrix would be a diagram 
with n vertices (if n is the number of rows), and the 
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as the Mayer graph). The idea is reminiscent of 
Feynman diagrams in the many-body perturbation 
theory. 

Combinatorial methods have important applications 
in chemical kinetics, For example, combinatorial and 
topological methods in nonlinear chemical kinetics can 
be seen in the paper of Glass.165 Some results of non- 
linear chemical systems were derived recently by Ber- 
atta et a1.166 using graph theoretical methods. Graph 
theoretical models of finding the possible mechanisms 
for a given type of reaction can be seen in the paper of 
S i n a n o B l ~ l ~ ~  and papers of Lee and S i n a n ~ ~ l u . ' ~ ~ ~ ' ~ ~  
King171 has shown that graph theory can be used to 
determine the dynamics of complex chemical reactions 
such as oscillatory reactions. The use of graph theory 
in chemical dynamics is reviewed by Clarke.172 Com- 
binatorial techniques such as Mobius inversion have 
several applications in physical sciences. A graph 
theoretic formulation of Ising problem, percolation, and 
graph coloring problems is given by Essam.170 The 
coloring problem of all connected subgraphs which is 
useful in statistical mechanics was solved by Essam 
using the Mobius inversion technique. The chromatic 
polynomials thus obtained using the Mobius inversion 
techniques were shown to have applications in statistical 
mechanics. 

Graph theoretical methods have been found to be 
successful in evaluating pressure virial coefficients of 
hydrocarbons, fluorocarbons, and their mixtures using 
the walks on chemical  graph^.'^^*'^^ The methods seem 
to be successful in predicting both liquid-state prop- 
erties and pressure second virial coefficients of n-al- 
kanes, n-perfluorocarbons, and alk-1-enes. Properties 
of the binary mixtures can also be predicted in terms 
of the properties of pure compounds. Graph theory was 
also applied to chromatography by Graph 
theory was used in fluid dynamics in solving Navier- 
Stoke's equation by Amit et al.176 Graph theoretical 
methods have been applied to several other areas such 
as statistical mechanics of polymers and related top- 
i c ~ , ~ ~ ~ - ~ ~ ~  structure and bonding of inorganic clusters, 

As one can see from the above-cited references, a 
significant amount of work has been done on a variety 
of topics dealing with applications of graph theory and 
combinatorics to chemical problems. While some of the 
topics have been reviewed, a satisfactory review of ap- 
plications of combinatorics and graph theory to espe- 
cially spectroscopy and quantum chemistry is timely 
and could be valuable. The objective of this manuscript 
is to review these applications to mainly spectroscopy 
and quantum chemistry. 
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I I .  Some Combinatorial Methods 

The objective of this section is to introduce some 
elementary combinatorial techniques, especially the 
ones which we apply here to spectroscopy and related 
areas. Methods are illustrated with examples from 
chemistry. 

A. PBlya's Theorem 

As mentioned in the introduction Pblya developed an 
important procedure now well-known as Pblya's theo- 
rem which was anticipated by Redfield. We outline this 

CL 

", 

Figure 1. The  two geometrical isomers of PtBr,C12. 

5 

6 

Figure 2. The  molecular graph used to  enumerate isomers of 
octahedral compounds. 

technique with chemical isomers as illustrative exam- 
ples. 

By the term isomers one means two structures with 
the same molecular formula one not transformable into 
another by any rotation in physical space. In group 
theoretical terms, this would correspond to structures 
with the same formula one not transformable into 
another by the proper rotations of the corresponding 
point group. 

We shall first take up as an illustrative example the 
problem of counting the number of isomers of an oc- 
tahedral molecule with a metal atom in the center and 
formulate it in mathematical terms. PtBr4C12, for ex- 
ample, is well-known to have just two isomers, namely, 
those shown in Figure 1. 

To abstract the problem in the language of mathe- 
matics, one looks at all maps (functions) from D to R 
where D is the set (1, 2, 3 ,4 ,  5,6)  of six vertices of the 
octahedron shown in Figure 2 and R is the set {Br, Cl) 
of atoms. Each map represents a chemical structure 
of an octahedral molecule containing Br and/or C1 at- 
oms and vice versa. 

For example the structures shown in Figure 1 corre- 
spond to the maps 

t-map c-map 
1- Br 1 - Br 
2 -  Br 2 -  Br 
3 - t  Br 3- c 1  
4 -  Br 4- Br 
5 -  c1 5 -  Br 
6 -  C1 6 -  C1 (1) 
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Figure 3. A molecular graph containing four carbon atoms. This 
is used to  enumerate the isomers of polysubstituted saturated 
compounds containing four unbranched carbon atoms. 

Another structure with the same molecular formula 
corresponds to a different map but is certainly obtain- 
able (as can be verified easily) from one of the above 
by a permutation of the vertices induced by the rota- 
tions of the octahedron. This leads to the mathematical 
concept of equivalence wherein equivalent maps rep- 
resent the same isomer and nonequivalent maps rep- 
resent different isomers. This concept of equivalence 
can be abstracted and formulated mathematically. 
Before we do this, we shall introduce the concept of 
weights to take care of the fact that isomers have the 
same molecular formula. To each element r E R let 
us attach a weight of w(r), which may be a formal 
symbol for the atoms or functional groups. With every 
function f(D - R) is associated a weight of WV, which 
is the product of the weights of all the images by f .  
Symbolically 

Wf) =dFD w ( f ( 4 )  (2) 

To illustrate let us associate a weight Br to the atom 
Br and a weight C1 to the atom C1. Then W(t-map) = 
Br4C12 and W(c-map) = Br4C12. Note, therefore, that 
molecules with the same atomic constituents correspond 
to maps with the same weight. 

We are now ready to give a precise mathematical 
definition of isomers. This will ultimately lead to 
general methods of counting of isomers. Let the 
chemical formula of the molecule M be given. The 
problem is to find the isomers of M. First we go the 
the graph r of M. The vertex set of r shall be parti- 
tioned into two parts, namely, (i) the set of chemically 
unlabeled vertices, i.e., those vertices to which the 
substituents are attached and (ii) the set of the re- 
maining vertices, which may be called “chemically 
labeled” vertices. For example, to find the isomers of 
C4H9Br, one considers the graph shown in Figure 3. 
Here the unlabeled vertices are those where the nine 
Hydrogen atoms and one bromine atom can be sub- 
stituted; and the vertices 1, 2, 3, and 4 are the chemi- 
cally labeled ones, since they are already labeled as 
carbon atoms. 

Let D stand for the set of chemically unlabeled ver- 
tices of I’, the graph of M. Let R be the set of sub- 
stituents which are used to label the vertices of D. Each 
map f(D - R) will now correspond uniquely to a 
structure of a chemical molecule with the same parent 
as M. With each type of substituent let us associate a 
weight w,. Let the given molecule M have bl functional 
groups of the type 1, b2 of the type 2, ..., and so on. 
Then the weight of the corresponding function will be 
w?lw? ... Let this be shortly denoted as wM. Consider 
the set F of all maps from D to R. Let FM be a subset 
of F consisting of those maps D - R with the weight 
wM. Now let G be a group of permutations acting on 
D induced by the rotations in physical space which give 
the needed isomers of M. 

In the above setting two functions f l  and f 2  E F are 
said to be G-equivalent where G is the group of 24 

rotations of the octahedron acting on the vertices. The 
G-equivalence classes of FM are said to be the isomers 
of M. Thus the number of isomers of M is precisely the 
number of G-equivalence classes of FW 

Pblya’s Theorem gives a formula for the number of 
various G-equivalence classes and also a generating 
polynomial for the number of G-equivalence classes of 
FM for various molecules M. Before stating the theo- 
rem, we need to know the concepts of the cycle index 
of a permutation group and of the pattern inventory. 

Let G be a permutation group. Every permutation 
of G has a unique cycle decomposition. Let a typical 
permutation g E G have b, cycles of length 1, b, cycles 
of length 2, and so on. Then xilx$ ... is said to be the 
cycle representation of the permutation g. The cycle 
index of G is defined as the sum of the cycle repre- 
sentations of various elements in G divided by lGl, the 
number of elements in G. It is denoted by Pc(xl,  x2, 
... ). Thus 

(3) 

In Pblya’s terminology each G-equivalence class of 
functions from D to R is called a pattern. It can be 
easily proved that the functions (maps) belonging to the 
same pattern have the same weight. Pblya defined 
therefore the weight of a pattern as the weight of any 
function belonging to it. Given a set of functions F from 
D to R and a permutation group G acting on D, we 
define the pattern inventory as the sum of the weights 
of various patterns contained in F. Let n(FM) stand for 
the number of isomers of M. It is nothing but the 
number of of G-equivalence classes belonging to FM. 
Each function FM has clearly the same weight wM by 
the definition of FM. Therefore the weight of each 
pattern (isomer) belonging to FM has the same weight 
wM. Thus we can form what may be called isomer in- 
ventory as CMM~(FM)WM where the summation runs over 
all molecules M having the same graph and the same 
set D of chemically unlabeled vertices. 

Consider a set F of functions from a finite set D to 
a finite set R. Let G be the permutation group acting 
on D giving rise to G-equivalence classes, i.e., the pat- 
terns of F. Then, by Pblya’s theorem (i) the pattern 
inventory is given by 

(4) 

In particular, (ii) the total number of patterns is given 
by 

Pc(IRI, IRI, ... ) ( 5 )  
Equivalently, the pattern inventory is obtained by re- 
placing x k  by & R ( w ( ~ ) ) ~  in the cycle index Pc(xl, x2, 
...). As a special case the number of patterns is obtained 
by letting w(r) = 1 for each r E R. This amounts to 
the substitution xk = IRI for every k in the cycle index 

Let us now apply Pblya’s theorem to enumerate the 
isomers of certain octahedral molecules. The group G 
acting on the vertices of the octahedron will be the set 
of proper rotations of the point group oh. The cycle 
index is easily computed by operating each of the typ- 
ical element of the conjugacy class of proper rotations 
of o h .  The classes of rotations are shown in Figure 4. 

P&l, x2 ,  ... 1. 
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6 
Figure 4. 

A permutation representation for each rotation is 
obtained by considering the effect of that operation on 
the six vertices of octahedron. (The vertices are con- 
sidered, since isomers are obtained by substituting the 
vertices with substituents.) For example, the effect of 
the C4 operation shown in Figure 4, described as a 
permutation of the vertices of octahedron, would be 
(1234)(5)(6). Since this yields two cycles of length 1 and 
a cycle of length 4, the cycle representation of this 
permutation is xTx4. The cycle index polynomial of the 
octahedral group is obtained by summing up the cycle 
representations of all elements in the 0 group. The 
resulting expression is 

pG(x1, x2 ,  * * * ,  x6)  = 
1 

- (x :  + 6xfx4 + ~x!x$  + 8 ~ :  + 6 4 )  (6) 
24 

The Pattern inventory, which is a generating function 
for isomers, is obtained by replacing every x k  by CrER 
(w(r))k and is given by 

1 
24 

wi + ... + w ; ) ~  + 8(w: + w! + ... + w $ ) ~  + 

PI = -[(~1 + ~2 + ... + ~ 6 ) ~  + 6 ( ~ 1 +  ~2 + ... + 
W6)’(wf + w$ + ... +w$) + 3 ( W 1  + wz + e.. + W6)’(wq+ 

6(wf + WE + ... + wB3] (7) 

If one identifies the weight w1 with the Br atom and 
w2 with the weight C1, then the number of isomers of 
PtBr4C12 is given by the coefficient of w i w i  in expression 
7. It can be seen that the coefficient of w:wz in ex- 
pression 7 is 

L ( x  + 9 + 6 + 18) = 2 
24 4!2! 

Thus, the number of isomers of PtBr4C12 is simply the 
coefficient of w:wi in expression 7. Expression 7 is thus 
a generation function for all possible isomers of octa- 
hedral molecules. For example, the number of isomers 
of RuCb(H,O)(CO) is given by the coefficient of w:w2w3 
in (7) which is 

(9) 
‘[ 6! + 6- 2! + 3- 
24 4!1!1! 1!1! 1!1! 

The number of isomers of RhClI(CH )CO(PPh3)2 is 
given by the coefficient of w1w2w3w4w5 2 shown. 

’[ 6! ] = 1 5  
24 2!1!1!1!1! 

Finally, the number of isomers of octahedral 
MABCDEF, where M is the metal atom is the coeffi- 
cient of wlw2w3w4wgwg in (7) and is given by (11). ’[ 6! ] = 3 0  

24 l!l!l!l!l!l! 

A review of simple use of Pblya’s theorem for enu- 
meration of chemical isomers and related topics can be 
found in references 28 and 29. 

B. Group Characters and Generalized Character 
Cycle Indices 

The ordinary cycle index defined in section IIA (used 
in P6lya’s theorem) can be extended to any character 
of an irreducible representation in a group G.  

Let g - x(g)  be the character of an irreducible rep- 
resentation I’ in the group G .  Then one can define a 
cycle index for each irreducible representation r with 
character x as 

where xt:%l ... has the same meaning as the cycle rep- 
resentation in section IIA: x(g)  is the character of the 
irreducible representation which corresponds to the 
element g in G. 

Let F be a set of all maps from D - R. There are 
IRIID1 such maps, where IRI and ID1 are the number of 
elements in the sets R and D, respectively. Suppose 
w(r) is simply the weight of an element r E R. Then 
a generating function can be obtained for each irredu- 
cible representation r with character x as 

GFx = PGX(xk  - ( ~ ( r ) ) ~ )  (13) 

Note that P6lya’s theorem is just a special case of the 
above generating function, namely, the generating 
function for the totally symmetric representation. Then 
the generating function for the totally symmetric rep- 
resentation is the attern inventory. The coefficient 
of a typical term w$w$ ... in the generating function for 
the totally symmetric representation gives the number 
of totally symmetric representation in the set of func- 
tions with the weight wt lwp .... It follows that the 
number of totally symmetric representations is simply 
the number of equivalence classes (isomers). This is, 
indeed, the celebrated Frobenius’ theorem! Thus from 
expression 13 one can derive very powerful theorems 
such as P6lya’s theorem, Frobenius’ theorem, etc. This 
extension of P6lya’s theorem to all characters was 
suggested by Williamson12J3 for characters of one-di- 
mensional representation and by Merris14 for characters 
of higher dimensional representations. The present 
author gave a physical significance for this extension 
for the first time. 

The present author showed that the coefficient of a 
typical term wtlw$ ... is the GFx corresponds to the 
number of times an irreducible representation whose 
character is x occurs in the (reducible) representation 
spanned by the set of functions from D to R with the 
same weight w;iwi2 .... This result is very significant. 
It is extremely useful in several chemical areas such as 

rER 
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Figure 5. Examples of graphs. The  first two graphs are iso- 
morphic (see section IIC). 

NMR spectroscopy, nuclear spin statistics, NQR spec- 
troscopy, unitary group approach to electron correla- 
tion, symmetry adaptation, etc. 

C. Elements of Graph Theory 

There are several excellent books on graph theory and 
a p p l i c a t i o n ~ . ~ ~ J ~ ~ J ~ J ~ ~  For details on graph theory and 
applications the readers are referred to these books. In 
this section we review briefly the basic concepts of 
graph theory needed for the applications outlined in 
this review. 

A graph is a diagram containing vertices and edges 
and the theory of graphs deals with the underlying 
Connectivity relationship and their properties. In for- 
mal terms, the graph G is defined as an ordered set 
(V(G), E(G)), where V(G) is the set of vertices of the 
graph G and E(G) is the set of edges. Figure 5 shows 
examples of graphs. It is important to stress that a 
graph depicts only the connectivity information &e., 
whether two vertices in G are connected or not) and 
does not provide any information on the arrangement 
of vertices in space. The same graph can be drawn in 
different ways. For example, the first two graphs in 
Figure 5 are the same since they provide the same 
connectivity information. A tree is a connected graph 
with no cycles. 

The adjacency matrix A of a graph is defined as 

(14)  
1 if i is connected to j 

Aij= { o  otherwise 

To illustrate the adjacency matrix of the first two 
graphs in Figure 5 is shown below. 

[' p a i] 
1 1 1 0  14a 

Two graphs are said to be isomorphic if the adjacency 
matrix of one is obtainable from another by relabeling 
the vertices. A formal definition of graph isomorphism 
is given in text 

A walk in a graph is a sequence of connected edges 
el, e2, ..., ek. k is referred to as the length of a walk. A 

Figure 6. A bipartite graph. Molecules with bipartite molecular 
graphs are also known as alternant molecules. 

self-returning walk is a walk in which one returns to the 
starting vertex by the end of walk. A self-avoiding walk 
is a walk in which no vertex appears more than once. 
The enumeration of walks on graphs is an important 
problem since it has several applications in diffusion, 
conformations of polymers, etc. Computer-assisted 
enumeration of walks and self-returning walks by way 
of obtaining generating functions (walk polynomials) 
was considered by the present author.lg2 

A graph is said to be bipartite if the vertices of this 
graph can be colored with say a green color such that 
no two connected vertices carry the green color. To 
illustrate, the graph in Figure 6 is bipartite. In chemical 
terms a molecule with a bipartite graph is called an 
alternant molecule. The coloring of the vertices of a 
graph is useful in several areas such as exact finite 
lattice statistics and adsorption of metals on surfaces. 
For details see the papers by Balasubramanian and 
RamarajIg3 and Motoyama and Hosoya.lg4 

ZZZ. Appllcaflons to Spectroscopy 

In this section we consider applications of techniques 
outlined in section I1 to several areas of spectroscopy 
such as NMR spectroscopy, dynamic NMR, molecular 
spectroscopy, and NQR spectroscopy of crystals ex- 
hibiting phase transition. 

A. NMR Spectroscopy 

The present author showed that Pblya's theorem, 
generalized character cycle indices and double cosets 
can be applied to a number of problems in 
NMR.56i57,63J95-19s First we consider enumeration of 
NMR signals in the low-resolution spectrum, where the 
number of signals corresponds to the number of mag- 
netically equivalence classes. 

Let D be the set of the nuclei of the same kind (such 
as H, I3C, etc.) in the molecule. For example, if 13C 
NMR of naphthalene is under consideration, then D 
would be the set of 10 carbon nuclei present in the 
molecule. Let R be a set containing just two elements. 
Let G be the point group or the permutation-inversion 
group of the molecule. To differentiate enantiotopic 
protons, G should be the rotational subgroup. Since G 
is the set of all permutational and composite permu- 
tation-inversion operations, any g E G induces per- 
mutations on elements in D since D is just the set of 
nuclei of the same kind in the molecule. Consider the 
set F of all maps from D to R. The action of G on D 
can in turn be transferred to F by the following recipe. 
Every g E G acts on F as defined by the formula 

(15) 

(16) 

gf(d) = f k - l d )  for every d E D 
Two maps f ,  and f l  E F are equivalent if 

f,(d) = f,(gd) for every d E D 
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Figure 7. A pericondensed benzenoid hydrocarbon. The numbers 
of 13C and proton NMR signals of this molecule are enumerated 
by using PBlya's theorem (see section IIIA). 

Maps in F that are equivalent can be grouped into the 
same equivalence class. Thus the group G partitions 
F into equivalence classes. Let us restrict ourselves to 
the maps in F which have the following structure. Let 
the elements of R be denoted by a1 and az. Label the 
elements of D as dl, dz, ..., d, with n = IDI. Then 
consider a subset F, of F with every fi E F, defined 
as 
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It can be seen that two nuclei di and d, are magnet- 
ically equivalent if f ,  is equivalent to f , .  Thus the 
equivalence classes of F, are the magnetic equivalence 
classes of nuclei in the set D. Hence the number of 
equivalence classes gives the number of NMR signals 
of the molecule. 

Define the weight of an element r in R and that of 
the function f as in section 11. Since any f, E F, takes 
all d, E D to cy1 except for i = j, the weight of any f i  
in F, is w = a?-la; if al is the weight associated with 
a1 and a2 is the weight associated to az. Then a gen- 
erating function can be obtained by P6lya's theorem as 
follows 

(18) 

The coefficient of w = ai 'az  in GF gives the number 
of magnetic equivalence classes of nuclei in D or the 
NMR signals of nuclei in D. Thus in order to enu- 
merate the NMR signals, we need to evaluate the gen- 
erating function. 

Consider the molecule CH3CHClCHzC1. This mol- 
ecule is nonrigid at  room temperature. The symmetry 
group of this nonrigid molecule can be obtained as a 
generalized wreath product group. The symmetry 
groups of nonrigid molecules and their applications to 
several chemical applications have been considered by 
the present author in several p ~ b l i c a t i o n s . ~ ~ ~ ~ ~ ~ ~ ~  The 
generating function for CH3CHC1CH2C1 is shown. 

+ 2(aa + a?J(al + a2)3] (19) 

The coefficient of afa2 in the above expression is the 
humber of proton signals at  low resolution and is given 
by 

(20) 

Thus there are four signals in the low-resolution NMR 
spectrum. 

We now consider many examples of molecules whose 
13C and proton NMR signals will be enumerated. First, 
consider the polycyclic pericondensed benzenoid hy- 
drocarbon shown in Figure 7. This molecule has 96- 

GF = PG(xL - a$ + a$) 

GF = 1/3[((~1 + 

1/3[(85) + 2(91 = 4 

Figure 8. A chiral macrocycle. The 13C and proton NMR signals 
of both rigid and nonrigid structures are enumerated in section 
IIIA. 

carbon nuclei. The point group can be seen to be DGh. 
The cycle index for these carbon nuclei is 

1 
24 

PG = - [ 2 ~ ! ~  + 4xA6 + 4x1' + 8~;' + ~x!x$~] (21) 

The number of 13C signals is the coefficient of ~ t : ~ a ~  in 
the appropriate generating function and can be seen to 
be 10. Consider the proton NMR of the same molecule. 
The cycle index for the transformation of protons is 

(22) 
1 
12 

The coefficient of in the appropriate generating 
function is 2. One can immediately infer that this 
molecule gives rise to 10 13C resonances and two proton 
resonances. As another nontrivial example we consider 
the chiral macrocycle containing enforced cavities re- 
ported by Helgenson et aLZo5 It is shown in Figure 8. 
This chiral molecule possesses only a fourfold axis of 
rotation, and its point group can be seen to be C4. The 
cycle index for the 13C NMR is 

(23) 

From the coefficient of a?'a2 in the generating function 
one infers that the low-resolution 13C NMR of this 
molecule would contain 22 signals. This molecule has 
eight methyl rotors exhibiting torsion at  room tem- 
perature and is thus an example of a nonrigid molecule. 
The symmetry of such a system can in general be de- 
scribed by generalized wreath product groups. The 
symmetry group of this nonrigid molecule is C4[C3], 
where C3 is the torsional group for each methyl protons. 
The cycle index of generalized wreath products can be 
obtained by using the method described e l ~ e w h e r e . ~ ~  
The cycle index for protons is 

(24) 
where Zi = (1/3)(x& + 2x3J. When the torsional per- 
mutations can be differentiated by NMR at feasible 
experimental conditions, the group becomes C4 and the 
cycle index is 

(25) 
The coefficients of C Y ! ~ C Y ~  in the degenerating functions 
obtained from expressions 24 and 25 can be seen to be 
12  and 16, indicating that the molecule would exhibit 
16 proton resonances at very low temperatures in com- 
parison to 12 resonances at  high temperatures. 

PG = -[[Xf4 + 7xi2 + 2xt + 2x!] 

PG = 1/4[xB8 + 2 X i 2  + x$4] 

PG = 1/4[xt0zf +2xj0Z + xiozg] 

PG = 1/4[xY4 + 2 X i 6  + 3x:'] 
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The generating function method outlined here can 
be applied to dynamic NMR spectroscopy. Consider 
the nonrigid PCl, molecule. Our method will explain 
the classical and well-known result that the NMR 
spectrum of the molecule PCl, contains only one signal. 
Even though the point group of the rigid PC15 molecule 
is D3h, the rotational group of the nonrigid molecule, 
the nonrigidity introduced through the Berry mecha- 
nism, is S,. (S ,  stands for the symmetric group, con- 
taining 5! elements.) The coefficients of afaz  in the 
NMR generating functions [26] and [27] of rigid and 
nonrigid molecules can be seen to be 2 and 1, respec- 
tively, explaining one NMR signal contrary to two sig- 
nals. 

( Y z ) ~ ( ~ ?  + a:) + 3o((Y1 + az)((Y': ai) + 15(a1 
az)(ay + ai)' + 20(aq + ai)(af + a!) + 24(a: + a!)] 

1 (27) 
Another example exemplifying the effect of internal 
rotation on the NMR spectrum is propane. The sym- 
metry groups of rigid and nonrigid molecules are Czu 
and Cz,[C3,E], respectively. The NMR generating 
functions of the rigid and nonrigid propane are given 
by (28) and (29), respectively. 

1 
4 -[(al + az)8 + 2(al + a 2 ) z ( a y  + 4 1 3  + + 4 ) 4 1  

(28) 

az)'(a;+ a;)' + 3(a2 + 

The coefficients of a:az in (28) and (29) are given by 
(30) and (31), respectively. 

+ 6(af + a!)(a: + a!) + 
12(al + (YJ~(CY; + + 6(a1 + (Y~)'(LY: + a:)] (29) 

If one labels the two sets of methyl protons (1, 2, 3) and 
(6,7,8) and if the methylene protons are labeled 4 and 
5, the eight protons are partitioned into the following 
three classes a t  very low temperatures with the con- 
vention that a 6, plane of the CZu group passes through 
the protons 1 and 6. 

11, 61, 14, 51, (2, 3, 7, 81 
Thus, a t  low temperature this method predicts three 
NMR signals, two due to two classes of methyl protons 
and one attributed to methylene proton with the in- 
tensity ratio 1:2:1. However, a t  high temperature the 
eight protons are partitioned into just two classes 
shown. 

(1, 2, 3, 6, 7, 81, (4, 51 
Consequently, a t  high temperature one observes only 
two signals with the intensity ratio 3:l and the effect 

of internal rotation is to coalesce the two NMR signals 
(1:2) due to methyl protons into one signal. 

Since the barrier to rotation in propane is rather 
small, it is very difficult to resolve the coalesced signals 
a t  low temperature. Consider the NMR restricted to 
tert-butyl group of 3-chloro-2,2,3-trimethylpentane. 
Experimental dynamic NMR spectrum of this molecule 
was recorded by Roberts and co-workers.206 The sym- 
metry group of the nonrigid molecule restricted to 
tert-butyl group at high temperature is C3[C3]. If tem- 
perature is not high enough for the molecule to tunnel 
through the barrier to rotation around the tertiary 
group, the symmetry group of the tertiary group be- 
comes E[C3]. If one considers the nine protons of 
tertiary group alone, the coefficient of a:az in the gen- 
erating functions for C3[C3] and E[C3] groups can be 
seen to be 1 and 3. This is in agreement with the ex- 
perimentally observed spectrumzo6 of this molecule 
which shows three peaks at  low temperature which are 
coalesced into one signal a t  high temperature. 

Graph theory and combinatorics can be applied to 
high-resolution NMR spectra also. One needs to con- 
sider spin-spin couplings and the nature of NMR spin 
Hamiltonian for this problem. The pregent authorlg5 
developed a graph theoretical method to characterize 
the symmetry group of NMR spin Hamiltonian and to 
classify the NMR spin functions. Operator methods 
were developed subsequently to generate NMR spin 
species and symmetry-adapted NMR spin func- 
tions.lg7Jg8 We only briefly review those methods here. 
For further details the readers are referred to 195,197, 
and 198. The applications of group theory to simplif- 
ying NMR spin Hamiltonian were first considered by 
McConnell, McLean, and ReillyZo7 and Wilson.208 Soon 
after the development of symmetry groups of nonrigid 
molecules by L o n g u e t - H i g g i n ~ , ~ ~ ~  Woodman210,211 
showed that NMR groups of these molecules can be 
expressed as semidirect product groups. Flurry and 
SiddalP developed the unitary group treatment for the 
NMR problem. 

The NMR spin Hamiltonian can be defined as 

HNMR = C u l ~ z i  + CCJ,,I,*I, (32) 

where v, is the chemical shift of the ith nucleus and JIJ 
is the coupling constant between the nuclei i and j .  The 
NMR group is defined as the set of permutations of 
nuclei that leave the NMR spin Hamiltonian invariant. 
In symbols, a permutation of the nuclei is in the NMR 
group if the corresponding permutation matrix P sat- 
isfies 

1 1 <J 

PHNMRP-l = HNMR (33) 
The present authorlg5 showed that a diagrammatic 
representation of HNm can be obtained by representing 
nuclei as vertices and edges by the coupling constants. 
Such a diagram is shown in Figure 9 for propane. The 
NMR graph in Figure 9 can be expressed as a compo- 
sition of the graphs Q and T1 and T2 shown in Figure 
10. The graph in Figure 9 can be obtained by replacing 
vertices 1 and 3 of Q in Figure 10 by a copy of T1 and 
the vertex 2 by a copy of Tz. Consequently, the NMR 
group of propane is expressible as a generalized wreath 
product. This group is S2[S3,Sz]. For details see ref 195. 

One can use GCCI's for classifying NMR spin spec- 
ies.197J98 We review this here. Table I shows all the 
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TABLE I. GCCI’s of S2[QS,S2]: NMR Group of Butane 
x:o x:x2 x;x; x:.; 4 x 3  xpx2x3 x;x& xyx; 

A1 1 8 22 24 4 20 28 9 
8 22 24 4 20 28 9 A2 1 

A3 1 4 -2 -12 4 
A4 1 4 -2 -12 4 4 -20 
A, 1 -4 -2 12 4 -4 -20 9 
A6 1 -4 -2 12 4 -4 -20 9 
A7 1 -8 22 -24 4 -20 28 9 
As 1 -8 22 -24 4 -20 28 9 

3 4 -20 

El 2 12 16 -12 8 24 -8 -18 
E2 2 4 -16 -36 8 16 8 -18 
E3 2 0 -20 0 8 0 -8 18 
E5 2 -4 -16 36 8 -16 8 -18 
E6 2 -12 16 12 8 -24 -8 -18 
G1 4 20 28 12 4 -4 -20 0 
Gz 4 12 -4 -12 4 -12 -4 0 
G4 4 4 -20 12 4 -20 28 0 
G5 4 8 4 0 -8 -16 -8 0 
G6 8 4 0 -8 -16 -8 0 
G7 4 -8 4 0 -8 16 -8 0 
GB 4 -8 4 0 -8 16 -8 0 
Gg 4 -4 -20 -12 4 20 28 0 
GI0 4 -12 -4 12 4 12 -4 0 
GI2 4 -20 28 -12 4 4 -20 0 
Kl 8 0 -8 0 -16 0 16 0 

I 

8 
Figure 9. NMR graph of propane. 

GCCI’s of the NMR group of the butane molecule 
which is Sz[S3,Sz], a group of order 288. Note that 
GCCI’s of the representation pairs (E3,E4), (G2,G3), and 
(Glo,Gll) are the same. Table I lists only the unique 
GCCI’s. If one replaces every x k  in the GCCI’s of bu- 
tane by ak + p k ,  one obtains the NMR spin species of 
butane. Consider the GCCI of G1 representation in 
Table I. To obtain the proton spin multiplets of the 
nonrigid butane corresponding to G1, we replace every 
x k  by a‘ + p k  in the GCCI of GI. This results in 

1 G F ~ ~  = -[4(a + p)l0 + 20(& + + p2) + 

p)7(a3 + p3) - 4(a + P ) 5 ( a 2  + @2)(.3 + 03) - 
20(a + @)3(a2  + @2)2(.3 + p3) - 

288 
28(a + p)6(a2 + p2)’ + 12(a + p)2(a2 + p2)3+ 4(a + 

12(a + p)(a2 + /32)3(~3  + p3) -  CY + p ) 4 ( ~ 3  + p3)’ - 
16(a + p)2(a2 + @)(a3 + p3)’ - 8(a2 + p2)2(a3 + p3)2] 

The above expression upon simplification yields 
GFGl = a9p + 4a8P2 + 9a7P3 + 14asp4 + 16a5P5 + 

14a4P6 + 9a3P7 + 4a2P8 + aP9 (35) 

Thus there is lG1 representation in the set of spin 
functions that have 9a’s and lp, 4Gl’s in the set of spin 
functions containing 8a’s and 2p’s, and 9Gl’s in the set 
containing 7a’s and 3p’s, etc. The coefficient of an1pnz 
generates number of times GI occurs in the set of spin 

(34) 

x1.”,3 x:xi x i x 2 x i  x i x !  xi x32x4 xi.6 x 2 x i  314x6 

12 4 8 4 12 48 24 36 24 
12 4 8 4 -12 -48 -24 -36 -24 
12 4 -8 4 12 24 24 -36 -24 
12 4 -8 4 -12 -24 -24 36 24 

-12 4 8 4 12 -24 24 -36 24 
-12 4 8 4 -12 24 -24 36 -24 
-12 4 -8 4 12 -48 24 36 -24 
-12 4 -8 4 -12 48 -24 -36 24 
-24 8 0 -8 0 0 0 0 0 

0 8  0 -8 0 0 0 0 0 
0 8 -16 8 0 0 0 0 0 

24 8 0 -8 0 0 0 0 0 
-12 -8 -16 -8 0 0 0 0 0 

-12 -8 1 6 - 8  0 0  0 0 0 
0 4  8 4 24 24 -24 0 -24 
0 4  8 4 -24 -24 24 0 24 
0 4 -8 4 24 -24 -24 0 24 
0 4  -8 4 -24 24 24 0 -24 

12 -8 -16 -8 0 0 0 0 0 

12 -8 1 6 - 8  0 0  0 0 0 
0 8  0 -8 0 0 0 0 0 

0 8  1 6 8 0 0 0 0 0  

12 -8 0 8 0 0 0 0 0  

-12 -8 0 8 0 0 0 0 0  

3 A  

Q 
TI T2 

Figure 10. NMR graph of propane expressed as generalized 
composition of the graph Q with T1 and T2. 

TABLE 11. Proton NMR Species of Butanea 
pS+l  1 3 5 7 9 11 
A1 0 5 3 4 1 1 
A2 3 2 5 2 2 0 
A3 0 1 0 1 0 0 
A4 1 0 1 0 0 0 
A5 0 0 0 0 0 0 

0 0 0 0 0 0 
A7 0 0 0 0 0 0 
As 0 0 0 0 0 0 
El 1 3 3 2 1 0 
E2 0 0 0 0 0 0 
E3 0 0 0 0 0 0 
E4 0 0 0 0 0 0 
E5 0 0 0 0 0 0 

G1 2 5 5 3 1 0 
G2 1 2 2 1 0 0 
G3 1 2 2 1 0 0 
G4 0 1 1 0 0 0 
G6 0 3 1 1 0 0 

. G6 2 1 2 0 0 0 
G7 0 1 0 0 0 0 
G8 1 0 0 0 0 0 
G9 0 0 0 0 0 0 
GlO 0 0 0 0 0 0 
GI1 0 0 0 0 0 0 
G12 0 0 0 0 0 0 
K1 1 2 1 0 0 0 

0 0 0 0 0 0 

aNumbers are the freauencies of that suin suecies. 

functions containing nla’s and n2P’s. Note that the 
term any3h corresponds to the total two-component spin 
quantum number MF = (nl - n2)/2 so that if the 
coefficients in GF’s are sorted in accordance to their MF 
values, one obtains the proton NMR G1 species as 

‘GI(~) ,  3Gi(5), 5Gi(5), ‘GI(~) ,  
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cules such,as SF6 was considered by Harter and co- 
workers.220~221 

Almost any theory or experiment in molecular spec- 
troscopy is concerned with the selection rules for ro- 
vibronic levels and the statistical weights of these levels 
which in turn yield information on the possible spectral 
lines and their i n t e n s i t i e ~ . ~ ~ ~ ~ ~ ~ ~  The usual approach for 
finding the statistical weights of rovibronic levels is to 
find the character of the representation spanned by the 
nuclear spin species of the nuclei in the molecule and 
then take the inner product of the rovibronic species 
and nuclear spin species and see if this contains the 
species of the overall internal function which must obey 
the Pauli exclusion principle. For a molecule containing 
bl nuclei of the type 1, bz nuclei of the type 2, etc. with 
their possible number of spin states being al, a2, etc., 
there are a:la$ ... spin functions. Even for a simple 
molecule like triphenylene there are 4096 spin functions. 
Consequently, to find the irreducible representations 
that these spin functions span, if one has to enumerate 
all the 4096 functions, look at their transformation 
properties, then get their characters and break them 
into irreducible representations, then this problem will 
probably remain unsolved for complex polyatomics. 
However, GCCI's are useful in generating the irredu- 
cible representations in a straightforward manner. For 
the problem of nuclear spin statistics, D is the set of 
nuclei and R is the set of possible spin states of the 
nuclei in D. For a set of spin l /z nuclei, R would be a 
set consisting of two elements which can be denoted by 
a (spin up) and (spin down). The image of F is the 
set of spin functions. For example, the map f l  from a 
set D, consisting of four nuclei, labeled 1, 2, 3, and 4, 
to R, which consists of the spin states a and p, is shown. 

(36) fi(4) = 

Then the spin function generated by f i  is ab&. G acts 
on the elements of F by the procedure shown. 

g(f(i)) = f ( g - 5 )  for every i E D 

To illustrate if we take g to be the permutation (1234), 
then g-' = (1432). Thus for the map f l  shown above 

fi(1) = a fi(2) = 0 fi(3) = 0 

= fik-ll) = fi(4) = a 

gf1(2) = f1k-12) = f l u )  = a 

gfi(3) = f1(g-~3) = fi(2) = p (37) 

gfi(4) = f1&-~4) fi(3) = 

Thus by the action of the permutation (1234) on fl, the 
spin function a&3a gets permuted to aa&3. Two 
functions f i  and f, in F are equivalent if there is a g in 
G such that 

f i ( d )  = fj(gd) for every d E D (38) 

All equivalent maps can be grouped together, and they 
form an equivalence class which is called a pattern. 
Then G divides F into patterns. 

If one associates a weight a to the spin state a and 
a weight /3 to the spin state 8, then the generating 
function corresponding to the irreducible representation 
r with character x is given by 

GFx = P G X ( X ~  + + pk) (39) 

TABLE 111. 48PcX for Various Irreducible Representations in 
the Group Oh 

irreducible 
representation 48PcX 

-41, X :  + + 7x3, + 62?~4 % : X i  + 6~2x4 8x6 + 3ZtX2 
A2g 
E, 
T1, 
T2, 
AI" 
A2u 
E" 
T," 
T2" 

X :  + 8 ~ ;  - 52: - 6~:*.4 - 3x t~ ;  - 6~2x4 + 8x8 + 3x:xz 
2 ~ :  - 8 ~ :  + 6 x : ~ ;  + 2 4  - 8x6 + 6~j.2 
3 ~ :  - 3 ~ :  + 6x:x4 - 9x:xi + 6~2x4 - 3*.;~, 
3 ~ :  + 92: - 6xy~4 + 3%:~; - 62224 - 3Xtx2 
X :  + 8 X i  + 5x3, + 6 ~ : ~ 4  - 3X:X; - 6.~2~4 - 8x6 - 3X;Xz 
x: + 8x: - 7x3, - 6&4 f 9x:x; f 6 ~ 2 x 4  - 8x6 - 3X:Xz 
2.4 - 8 ~ :  + 6 ~ t . 4  - 2 ~ ;  + 8x6 - 6x;xz 
3%: - 9 ~ :  + 3x:x; + 6.~?.~4 - 6 x 2 ~ ~  + ~X;X, 

32: + 3 4  - 9x:x; - 6x?x4 + 6 x 2 ~ ~  + 34x2 

The numbers in parentheses give the number of G1 
multiplets of the appropriate multiplicity. This can be 
briefly summarized in Table I1 where we give all the 
proton NMR multiplets of nonrigid butane obtained by 
using the GCCI's. If one is interested in the effect of 
nonrigidity on these spin species, one can construct the 
spin species in the NMR group of the rigid molecule 
and correlate the rigid and nonrigid species. Such a 
correlation can be easily obtained in the total repre- 
sentation as shown by the author in an earlier paper 
where he called the resulting diagram a coalescence 
diagram.lg5 

If one needs to obtain the deuterium NMR spin 
species of butane, all that one needs to do is to replace 
every xk in the GCCI's in Table I by Ah + p k  + #, where 
A, p, and v are the weights corresponding to mf = -1, 
0, and 1, respectively, of the D nucleus. One can then 
easily sort the coefficients in the generating function 
in accordance to their total MF values and thus generate 
the multiplets. 

The NMR spin Hamiltonian matrix can be blocked 
into a block-diagonal form if one constructs symme- 
try-adapted NMR spin functions in the NMR group. 
This aspect was considered by the present au- 
thor.195J97J98 The readers are referred to these refer- 
ences for further details. 

The use of GCCI's to enumerate the number of 
multiple quantum NMR signals is being considered by 
Balasubramanian and Pines.213 One can differentiate 
dipolar couplings by orienting the molecule in liquid- 
crystal media and study its multiple quantum spectrum. 
Such spectra can reveal detailed information on the 
structure and can be much simpler for higher quantum 
spectra. 

B. Molecular Spectroscopy 

In this section, we show that the GCCI's defined in 
section IIB are useful in generating the nuclear spin 
statistical weights of the rovibronic levels. The methods 
reviewed in this section were developed in the present 
author's papers.214s215 Application of GCCI's to nuclear 
spin statistics of weakly bound van der Waals com- 
plexes was considered by Balasubramanian and Dyke.216 
Using these methods nuclear spin statistical weights of 
other complicated molecules like cubane (both normal 
and deuterated) and icosahedral borohydride ions were 
obtained by Balasubramanian, Pitzer, and S t r a u s ~ . ~ ~ ~  
Algorithms and computer programs for computing nu- 
clear spin statistical weights, nuclear spin species were 
developed by the present i n v e s t i g a t ~ r . ~ ~ ~ ~ ~ ~ ~  The use of 
unitary group approach to study the hyperfine and 
superfine structure in the molecular spectra of mole- 
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TABLE IV. Generating Functions of Fluorine Species of 
SFc 

irreducible 
representation GF 

a6 + .50 + 2 a 4 p  + 2 a 3 8 3  + 2 2 ~  + ap + p 
,383 
,5p + 2,482 + 2,303 + 2 2 ~  + 4 5  

,4p2 + a 3 p 3  + ,284 

A I ,  
A, 
E, 
Tl, 
T 2 r  
A I ,  
A 2 u  a3p3 
E U  0 
T I ,  
T Z U  

0 

0 

.6p + a 4 p  + 2a3p3 + .2p4 + a85 
,4@2 + ,383 + a2a” 

The coefficient of a typical term ( ~ ~ ‘ $ 2  gives the number 
of times the irreducible representation I? occurs in the 
reducible representation spanned by spin functions 
containing ala’s and az@’s. In particular, the number 
of times the irreducible representation I? occurs in the 
set of all spin functions is given by 

nr = p G x ( x k  -P IRI) (40) 

where IRI is the number of elements in one set R. 
Consider the 33SF6 molecule as an example. The set 

D is the set of 19F nuclei. The set R for F nuclei con- 
tains two elements since 19F is a spin nucleus and 
hence can take two possible spin states. We may as- 
sociate the weights a and @ to these states. To illus- 
trate, consider the species E, of the Oh group. The 
nuclear species which belong to this species can be ob- 
tained by replacing every xk by (ak + pk) in the corre- 
sponding PGX.  The result of this substitution is shown. 

1 
48 

PGEg = -[[2Xf - 8x8 + 6x1~; + 2Xi - 8x6 + 6x:x2] 

(41) 
Thus 

1 
48 

GFEg = -[2(c~ + @)6 - 8(a3 + @3)2+ 6(a + @ ) 2 ( ~ 2  + 
p2)’ + 2(a2 + @2)3 - 8(a6 + p6) + 6 ( ( ~  +@)4(a2 + p2)] 

(42) 
The above expression on simplification yields 

a5p + 2a4@2 + 2a3p3 + 22p4 + 4 5  (43) 
Thus there is one E, in the reducible repryentation 
spanned by spin functions containing 5a’s and I@, 2E, 
in the reducible representation spanned by spin func- 
tions containing 4a’s and 2p’s, and so on. The gener- 
ating functions thus obtained for the fluorine species 
are shown in Table IV. One can obtain the nuclear 
spin species by a simple examination of the generating 
functions. The coefficient of a typical term aa@l in a 
generating function corresponding to the species F gives 
the number of functions belonging to the species r with 
the spin quantum number m, = (al - b1)/2. When these 
species are arranged according to their m, values, they 
separate into spin multiplets with m, varying from -S 
to S. For example, the generating function which 
corresponds to A,, gives rise to species IA,, and 3A1,. 
In this manner when one groups the spin species into 
multiplets as obtained from their generating functions 
one obtains the fluorine species as IAlg, 3A1g,, 5Eg, 3Eg, 
3T2g, lA2,, TlU, ,TI,, and 3T2u. The spin species of the 
33S nucleus is easily obtained as 4A1, since the spin of 
33S nucleus is 3/2. The overall spin species is the direct 

product of sulfur and fluorine species. A typical direct 
product of the species DB’ and DY, DB1 X DY, decom- 
poses into a Clebsch-Gordan series35 

81+% 

Df1 X Dj”” =E Di (44) 
k S=~S~-S* I  

where 
Di X Dj = XDk (45) 

the direct sum of irreducible representations Dk’s con- 
tained in Di X D;. This way we obtain the overall sDin 

k 

species as ‘0Al , &Al (21, 4A1,(2), 2A1h4A2%TdE,, ‘jEgi2), 

2Tlu, 6T2u, 4T2u, and 2T2u. Ah these spin species span 
4 ~ , ( 2 ) ,  2E,(2), 8 ~ ~ ~ ,  $T,,, 2~~ , 4 ~ ~ ~ ,  lu, lu, 4 ~ ~ ~ 2 ) ;  

a reducible representation which is decomposed into the 
irreducible representations of Oh by adding all the 
multiplicities times the frequency of the same species. 
The result is shown. 
rsPin(SF6) = 40A1, + 4Azg + 32E, + 12T2, + 4AzU + 

24T1, + 12T2, (46) 

If one is interested in obtaining Pin instead of the 
actual spin multiplets, then this can be generated di- 
rectly by expression 40 without generating the nuclear 
spin multiplets. For the purpose of statistical weights 
of rovibronic levels, we need Pin only rather than the 
whole spin multiplet pattern. 

This method can be applied easily to complex poly- 
atomic molecules. Consider triphenylene in two forms 
as examples of such molecules. The point group of 
triphenylene can be easily seen to be D3h whose char- 
acter table can be readily obtained, We now consider 
[12C]triphenylene. In this molecule only the 12 protons 
possess nuclear spin, and hence we consider D as just 
the set of these protons. The various cycle indices for 
these protons are shown. 

PA< = - (2~!‘  1 + 4.4 + 6x8) 12 

PE‘  = -(4x;2 1 - 4x4) 12 

(47) 

(49) 

All the other cycle indices are zero. The number of 
A1”s, Ai’s,  and E”s in PHspin are shown. 

(50) 

(51) 

(52) 

N(Al’) = Y6(P2 + 2.24 + 3.26) = 720 

N(A,’) = Y6(212 + 2.24 - 3.26) = 656 

N(E’) = ‘/(2.212 - 2.Z4) = 1360 

Thus 
pHspin = 720A1’ + 656Az’ + 1360E’ (53) 

When all the “C carbon nuclei are replaced by 13C 
carbon nuclei, then we have to consider the set of 18 
carbon atoms to obtain Pin. We now let D be the set 
of 13C carbon nuclei and R as their spin states. Then 
the various cycle indices are as follows 

(54) 

(55) 

(56) 

PA1‘ = 1/6[xi8 + 2x2 + 3x$] 

PAz’ = 1/6[xi8 + 2x2 - 3x$] 

P E ’  = y6[2xy  - 2x21 
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TABLE V. Proton Species of Benzene Dimer 
r spin species 

The other cycle indices are zeros. Thus N(Al'), MA,'), 
and N(E') for carbon species are shown. 

N(Al') = Y6(218 + 2.26 + 3.2') = 43968 (57) 

N(A2') = 1/6(218 + 2.26 - 3.2') = 43456 (58) 

(59) N(E') = Y6(2.218 - 2.26) = 87 360 

Hence 

rCsPin = 43 968 Al' + 43 456 A i  + 87 360 E' 

The overall species, Pin = I' C 

(61). 

(60) 
X rHspin, is given by 

rspin 

178 973 696 Ai' + 178 940 928 A i  + 357 913 600 E' 
(61) 

One can obtain the statistical weights from rspin 
easily. This is done by stipulating that Pin X rrve 
should contain rint, where rwe is the rovibronic species 
and rint is the species of the overall internal wave 
function. By the Pauli exclusion principle rht must be 
antisymmetric and hence the character of rint must be 
-1 with respect to permutations for fermions. For bo- 
sons it must be +l. Since 18 13C nuclei of [13C]tri- 
phenylene transform as x i  under the operation c2 and 
since they are fermions, rint is A2' or Ai'. Thus the 
statistical weights are as follows: 
A1'(178940928), Ai(178973696), E'(3579136001, 

A,"(178940928), Ai'(178973 696), E"(357 913600) 

The method of GCCI's can be applied to nonrigid 
molecules also. The readers are referred to ref 215 for 
applications to nonrigid molecules. 

Balasubramanian and Dyke216 have considered very 
recently, applications of GCCI's and other group theo- 
retical techniques to obtain correlation tables, nuclear 
spin statistical weights, and nuclear spin species of 
weakly bound van der Waals complexes such as benzene 
dimer, synthesized in a supersonic beam. We show the 

TABLE VI. Correlation Table for (C6H6)* and (C6D& 
C2 &[Dd x I 

(C&& AI* (1984) A1*(28) + Az*(21) + A5*(l) + A6*(0) 
E1*(21) + &*(91) + E4*(3) + 2E,*(39) 
+ E6*(13) 
3G3*(33) + G4*(27) + 3Gs*(ll) + G6*(9) 

2(=10*(55) + 2(311"(45) + 2Glz*(36) + 

G1*(77) + 3G,*(63) + 
+ G7*(143) + 3G8*(117) + 2Gg*(66) + 
4K*(99) 

(CGD6)Z A,* (266814) Al'(4278) + Az'(4186) + A5*(1081) + 
A,3*(1035) + E1*(3496) + E3*(6716) + 
&*(1748) + 2&*(2774) + E~'(3358) + 
G1*(10672) + 3Gz*(11408) + 3G3*(4408) 
+ G4*(4712) + 3'&*(5336) + Ge"(5704) 
+ G7*(8468) + 3G,*(9052) + 2Ggf(6786) 

2G1Z1(7626) + 4K*(14384) 

El"(21) + 2&*(7) + E3*(91) + E4*(3) + 
+ 3G1*(77) + G2*(63) + G3*(33) 

+ 3G4*(27) + G5*(11) + 3G6*(9) + 
2G10*(55) + 2(=11*(45) + 2G12*(36) + 

+ 2G10*(6670) + 2(311*(7750) + 
(C&j)2 AQ* (2112) A3*(6) + A4*(3) + Aj'(91) + AB'(78) + 

3G7*(143) + G8*(117) + 2Gg*(66) + 
4K*(99) 

(CeD6)z Ai* (264627) A3*(741) + A4*(703) + Aj"(2701) + 
A8*(2628) + E1*(3496) + 2&*(4232) + 
3G1*(1O672) + Gz*(11408) + Gs'(4408) 
+ 3G,*(4712) + G5*(5336) + 3(316*(5704) 
+ 3G7*(8468) + G8*(9052) + 209*(6786) 
+ 2G1,*(6670) + 2G11*(7750) + 

E3*(6716) + E4*(1748) + E6*(3358) + 

2GlZ*(7626) + 4K*(14384) 

nuclear spin species for benzene dimer in Table V and 
the rovibronic correlation table including the spin sta- 
tistical weights in Table VI. In Table VI, the equi- 
librium geometry of the benzene dimer is assumed to 
be T-shaped. 

C. NQR Spectra of Crystals 

NQR spectroscopy of crystals uses a quadrupolar 
nucleus as a probe to detect and estimate electric field 
gradients in ~ r y s t a l s . ~ ~ ~ - ~ ~ ~  A problem in interpreting 
complex NQR spectra of crystals is to theoretically 
obtain these NQR spectral patterns which should in- 
clude the number of NQR lines and their intensity 
ratios in a given crystalline environment. NQR fre- 
quency is quite sensitive to minute differences in 
electric field gradients, and thus this method is very 
useful in investigating crystals exhibiting phase tran- 
sition. At the critical temperature the symmetry of the 
crystal usually changes. This is in turn reflected in their 
NQR spectra. Sutton and ArmstrongZz6 have recently 
studied the NQR spectra of antifluorite crystals in 
various phases. It would be valuable to have an easy 
theoretical method to obtain NQR spectral patterns so 
that given the symmetry of the unit cell of the crystal 
under consideration, one can predict the NQR spectral 
patterns. Conversely, this method would be of immense 
use in assigning the symmetries of the various phases. 
This method was recently developed by the present 
author. 227 

Let G be the point group corresponding to the space 
group of the crystal. Let D be the set of nuclei. Then 
each operation g E G can be considered as a permu- 
tation or permutation-inversion operation on D. Let 
R be a set containing just two elements denoted by ai 
and cy2. Let f i  be a map from D to R defined as follows 
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Two maps f i  and f j  (i # j )  are equivalent if there is a 
g E G such that 

f&d) = f j (d)  for every d E D (63) 

The above relation divides the set F of all maps from 
D to R into equivalence classes. It can be easily seen 
that the equivalence classes of F are the equivalence 
classes of nuclei. This is because if f i  and f j  are equiv- 
alent, then the nuclei di and d j  are also equivalent. 
With each r E R let us associate a weight w(r).  For 
example, with a1 associate a weight a1 and with a2 as- 
sociate a weight cyg. Define the weight of any f €, F as 
in section I1 of this review. The weight of any map f i  
is a?-’a2 if N is the number of nuclei in D. Pblya’s 
theorem gives a generating function for the equivalence 
classes of maps by the following substitution in the cycle 
index. 

Chemical Reviews, 1985, Vol. 85, No. 6 611 

The coefficient of afii-’a2 (N  being the total number of 
nuclei) gives the number of equivalence classes of nuclei 
under the action of G. 

This can be illustrated with the example of fluorine 
NQR spectrum of antifluorite crystals with Oh sym- 
metrr  If one replaces every x k  in the cycle index of Poh 
by a1 + ut ,  one obtains 

+ CY$)’ + 6(a1 + ( Y ~ ) ~ ( c Y :  + ai) + 7 ( 4  + + 8(4 
+ a!) + 3(al + + a$) + 6(aT + a$)(a: + ai)] 

(65) 

The coefficient of afa2 in the above expression is 1, 
indicating that all the nuclei are equivalent under the 
O h  symmetry. Consider the same crystal with distor- 
tions which correspond to C 4 h  and Ci subgroups of the 
Oh group. The cycle indices for CQh and Ci are 
Pc4h = f/8[x: + 2xqr4 + xTx$ + x:xz + 2 x 2 ~ 4  + x!] (66) 

pc, = Y 2 b P  + $1 (67) 

The corresponding generating functions are 

GFC4h = ~ / S [ ( C Y ~  + + 2(al + a2)2 (~:  + ai) + (a1 + 
( ~ ~ ) ~ ( a f  + + (a1 + ( Y , ) ~ ( c Y ~  +ai) + 2(af + 

a$)(a: + ad) + (a: + a$)3] (68) 

G F ~ ,  = y2[(al + a2)6 +(a: + 4 ) 3 1  (69) 

The coefficient of afaz in these generating functions are 
2 and 3, indicating 2 and 3 equivalence classes under 
the action of C4h and Ci symmetries. Thus a single 
fluorine NQR line of an antifluorite crystal splits into 
two lines for a distorted crystal with C4h symmetry and 
three lines for a crystal with Ci symmetry. This is 
consistent with the observation of Sutton and Arm- 
strong.226 

V. Applications to Quantum Chemistry 

In this section, we review some of the important de- 
velopments in the applications of graph theoretical and 
combinatorial techniques to quantum chemistry. Al- 
though, this review will focus on applications to secular 
equations, symmetry-adaptation and CI calculations, 

we first review other important applications which have 
been considered in some depth elsewhere. 

Sinan6glu2*B1 has recently given algebraic and graph 
theoretical formulation of structure of quantum chem- 
istry and kinetics. In this formalism molecules are 
classified into equivalence classes (L-equivalence 
classes) by introducing an equivalence relation (L) using 
a set of nonunitary transformations belonging to several 
linear groups. Molecules in the same class have the 
same energy level patterns thereby facilitating a tech- 
nique to arrive at  energy level patterns based on L 
equivalences. Sinanijglu has derived simple qualitative 
rules for electronic properties such as reactivity, rough 
energetics, etc. For details of the topological and graph 
theoretical techniques used for these problems, the 
readers are referred to ref 228-231. 

Mezey232-246 has formulated a new framework called 
“reaction topology”. This enables description of mo- 
lecular structure, conformational changes, and reaction 
mechanism. In the last few years, Mezey has published 
well over 40 publications in this area. Since molecules 
are best described by quantum mechanical probability 
distributions, a mathematical framework of topology 
is better suited to describe molecules and chemical re- 
actions than their associated geometries. The concept 
of nuclear position is then best described with the 
quantum-topological concept of “open set” which de- 
scribes a distribution of nuclear positions rather than 
a deterministic value for the nuclear position. Mezey 
has shown that topological framework is extremely 
useful in answering several practical chemical questions 
related to the enumeration of possible chemical species 
and chemical reactions for a given collection of nuclei 
and a fixed number of electrons. Mezey defined a to- 
pological matrix called “reachability matrix” on reaction 
networks. Several graph theoretical matrices such as 
adjacency matrix, distance matrix, etc. have close ties 
with reaction topology and are extremely useful in 
conventional synthesis planning. For further details on 
this topic the readers are referred to ref 244 and 245. 

have shown that the 
gradient of charge density and the associated diagrams 
are extremely useful in formulating a new theory of 
molecular structure. The investigation of the topolog- 
ical properties of the molecular charge distribution leads 
to prediction of structural stability. The mechanisms 
of structural changes can be discussed by using Rene 
Thom’s theory of catastrophes. Bader249 has shown, for 
example, the formation and destruction of a cage 
structure in the molecule C5H6 ([l.l.l]propellane) can 
be explained through a function known as the unfolding 
of elliptic umbilic. One can formulate a molecular graph 
based on the charge density gradient diagrams. The 
properties of the graph and the associated critical points 
are then shown to be useful in predicting structural 
stabilities.249 This topic was reviewed by Bader and 
c o - ~ o r k e r s . ~ ~ ~ ~ ~ ~ ~  The readers are directed to these re- 
views for further details. 

In the ensuing subsections, we review some other 
applications of graph theory and combinatorics to 
quantum chemistry. 

A. Characteristic Polynomlals of Graphs 

Characteristic polynomials of graphs are structural 
invariants and have several important applications to 

Bader and 
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chemical  problem^.^^^-^^^ (Also see ref 111-163 in re- 
lationship to applications to aromaticity and topological 
properties of conjugated systems.) The relationship 
between the adjacency matrix of a graph defined in 
section IIC and the Huckel matrix in the theory of x 
electrons is well-known. Chemists have recognized this 
intimate relationship and have used graph theoretical 
techniques to derive or rederive many of the quantum 
chemical results for the r-electrons. A number of pa- 
pers have appeared in the chemical and mathematical 
literature dealing with characteristic polynomials and 
their applications. Since the present review is more 
broad, we have only cited some of the references in the 
literature. We review here only some of the recent 
developments in this area. The authors are referred to 
the articles by RouvraylW and Rouvray and BalabanZa 
for some of the earlier developments such as the use of 
Sach's theorem to derive the characteristic polynomials. 

Characteristic polynomials are useful in discussing the 
electronic properties of polymers and periodic struc- 
tures.291i296 They are useful in determining the stability 
of conjugated systems.296 The present authorB1 recently 
showed that characteristic polynomials of very large 
periodic networks and organic polymers can be very 
easily derived and are extremely useful in electronic 
structure calculations of these systems. 

Characteristic polynomials are the generators for the 
number of ways dimers can be placed on tree lattices 
and Bethe lattices since the coefficients of various terms 
in the polynomial generate the number of ways of 
placing a given set of disjoint dimers on the corre- 
sponding lattice. Exact finite lattice statistics is a useful 
way of obtaining the grand canonical partition function 
of a lattice gas. Thus characteristic polynomials and 
the associated acyclic or matching polynomials have 
potential applications in statistical mechanics. 

Characteristic polynomials find applications in other 
areas of chemical physics such as chemical kinetics, 
dynamics of oscillatory chemical reactions, and fluid 
mechanics (in solving Navier-Stokes equation). 

The coefficients in the characteristic polynomials of 
graphs are useful in the formulation of topological 
indices such as Hosoya index which are useful in cor- 
relating the physical (thermodynamic) properties of 
molecules with their topological properties. The in- 
terested readers are also referred to the recent book by 
BonchevZg8 for further information on this topic. 

The characteristic polynomial of a graph is defined 
as the secular determinant of the adjacency matrix of 
the graph, where the adjacency matrix was defined in 
section IIC. In symbols 

where I is the identity matrix of the same order as A. 
The direct evaluation of this polynomial involves de- 
terminant expansion. Since determinant expansion is 
a computationally tedious problem, it is not suitable for 
large graphs. Thus the evaluation of characteristic 
polynomials of graphs containing a large number of 
vertices is a very difficult problem because of the 
above-mentioned combinatorial complexity. In recent 
years, several imaginative methods have been developed 
to evaluate the characteristic polynomials. 

The present authoP8 developed a tree-pruning me- 
thod to generate the characteristic polynomial of trees. 
In this method, the tree whose polynomial is in question 

PG(X) = IA - XI1 

Balasubramanian 

4 21 
7 t6 5 

19 
617 1 

Figure 11. A tree containing 22 vertices. The  characteristic 
polynomial of this tree can be obtained by pruning this tree. See 
section IVA. 

Q1 

111 l21 l31 
Figure 12. Q1 is obtained by pruning the tree in Figure 11. T1,, 
Tzl, and Tal are the typical fragments resulting in the process 
of pruning. 

- w  1 2  
Q2 T I  2 

Figure 13. Qz is the tree obtained by pruning the tree Q1 in 
Figure 12. TI, is a typical fragment. 

is pruned at  branches and simplified to smaller trees 
and fragments resulting in the process of pruning. We 
briefly review this method here. The vertices of a tree 
with degree (valence) 1 can be defined as the roots or 
joints of a tree. The joint and the leaves connected to 
this joint together constitute a branch. Any tree can 
be pruned at such joints resulting in a smaller tree and 
the branches or fragments. To illustrate, consider the 
tree r in Figure 11. The vertices 1, 6, 7, 8, 9, 10, 13, 
14, 16, 17, 19, 20, 21, and 22 are the leaves and the 
vertices 2, 3, 4, 5 ,  11, 12, 15, and 18 are the roots and 
joints. When the tree in Figure 11 is pruned a t  the 
joints 2,3,4,5, 11, 12, 15, and 18, one obtains a smaller 
tree Q1 shown in Figure 12 and the fragments Tll, T21, 
and T31. Note that all the similar fragments have been 
grouped together in a box. Equivalently, the tree in 
Figure 11 can be obtained by attaching the roots 1 and 
8 of Q1 in Figure 12 to the root of a copy of Tll, the 
roots 2,3,6, and 7 to the root of a copy of TZ1, and roots 
4 and 5 to the root of T31. This product was formulated 
by Bala~ubramanian~~ and was referred to as root-to- 
root product. This pruning process has brought the tree 
in Figure 11 to a much smaller tree in Figure 12 and 
the fragments resulting from the pruning process. The 
advantage of this pruning procedure is that several 
graph-theoretical properties of a bigger tree can be 
obtained in terms of the corresponding properties of the 
pruned tree and smaller fragments. The pruning pro- 
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cess can be iterated until one obtains a very simple tree 
whose characteristic polynomial can be obtained easily. 
Consider, for example, the tree in Figure 12. This tree 
can be pruned further to the tree Q2 in Figure 13 and 
the fragment T12. The tree Q2 in Figure 12  has only 
two vertices, and thus the properties of Q2 and Tlz can 
be obtained very easily. 

Let Q be the tree generated in the process of pruning 
and Ti's be the corresponding fragments. Let Hi be the 
characteristic polynomial of the type Ti. Let H/  be the 
characteristic polynomial of the fragment Ti with the 
root of Ti deleted. Let the vertices of Q be partitioned 
into the sets Y,, Yz, ... such that all the vertices in Yi 
when attached to a copy of the same fragment generates 
the original tree. Define a matrix A as follows 
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The determinant of the matrix A is the characteristic 
polynomial of the original tree. The advantage of this 
method is that it provides for the characteristic poly- 
nomial of a big tree in terms of the characteristic pol- 
ynomials of smaller trees. 

The process outlined above can be iterated until one 
obtains a sufficiently small tree so that its characteristic 
polynomial can be easily determined. Let Qj be the tree 
generated in the j th  iteration. Let Tij  be a fragment 
type obtained in the j th  iteration. Let the vertices of 
Qj  be partitioned into sets Y,'s such that all the vertices 
in a set Yij  are attached to a copy of the same fragment 
type Tij. Let a matrix element of the adjacency matrix 
of Ti be tK). Then define a matrix DCiJ) as follows 

where Hkj-1 is the secular determinant of the matrix 
D(kj-l) and Hkj-l is the secular determinant of the 
matrix D'(kj-l) which is obtained by deleting the row and 
column in the matrix D(kj-l) corresponding to the root 
of T k  j- l . Hkl is simply the characteristic polynomial of 
the type Tkl .  If the type Tkl contains i vertices, this 
characteristic polynomial will be denoted as hi and the 
polynomial obtained by deleting the root of Tkl is h',. 
Note that in general hi = xi - (i - 1)@ and h: = xi-{. 

Suppose n is the last step of pruning. Then define 
a matrix A as follows 

where qE is an element of the adjacency matrix of the 
tree Q, generated in the final iteration. The deter- 
minant of the matrix A defined above is the charac- 
teristic polynomial of the tree we started with. 

Let us now illustrate this procedure with the example 
of the tree in Figure 11. The tree in Figure 11 is pruned 
to the tree in Figure 12, finally to the tree in Figure 13 
in the second step of the iteration. All the relevant 
matrices and characteristic polynomials are shown. 

HI, = h, ,  HIll = h', ,  H , ,  = h, ,  HIal = h',, H , ,  = h , ,  and = 1 
( 7 3 )  

r h ,  0 0 -hf.,l 

( 7 4 )  

HI, = h2,h4h, - 2h,h',h,  - 

HIl2 = hih ,  

By substituting hi = xi - (i - 1 ) ~ " ~  and h: = xi-l 7 we 
obtain the following expression for the characteristic 
polynomial of the tree in Figure 11. 

x10(x6 - lox4 + 30x2 - 28)2 - x8(x6 - 7x4 +lox2 - 12) 
(80) 

Thus the characteristic polynomial of a tree of 22 ver- 
tices was easily obtained by this method. 

The present a u t h o P  recently showed that an alge- 
braic method which was attributed by DwyerZg9 to 
Frame300 (Frame's method) is potentially useful in 
generating the characteristic polynomials of graphs 
containing a very large number of vertices. A computer 
program was developed by the present investigator289 
based on the above method. Krivka, JericeviC, and 
T r i n a j ~ t i E ~ ~ ~  have recently shown that the Frame's 
method outlined in the present author's paper is the 
same as the Le Verrier-Faddeev's method for the 
characteristic polynomials. Other manifestations of 
Frame's method could also be found in the literaturee302 
We briefly review this method here since characteristic 
polynomials of very many complicated graphs and more 
recently of organic polymers and periodic structures 
have been obtained by this methodaZg1 

Let A be the adjacency matrix of a graph. Define the 
set of matrices BL's recursively by the following recipe. 

C1 = trace A (81) 

(82) 

C2 = (1/2)trace B1 (83) 

Bz = A(B1- CZI) (84) 

C3 = (1/3)trace B2 (85) 

B1 = A(A - CiI) 

... 
B,-1 = A(B,4 - Cn-lI) (86) 

C, = (l/n)trace Bn-l (87) 

The characteristic polynomial of the graph whose ad- 
jacency matrix is A is given by 

An - CIAn-' - C2An-' ... - C,-1A - C, (88) 

Thus, the coefficients C1, Cz, ... are generated as traces 
of matrices obtained in the above recursive matrix 
product. Hence the Frame method provides a very 
efficient algorithm for the generation of coefficients C1, 
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phine dianion. The above problem first reduces to 
finding the equivalence class of 20 nuclei such that only 
those p z  orbitals centered on the nuclei in a class mix 
to form a SALC. The solution for this problem is ob- 
tained by setting x to be the character of the identity 
representation in the GCCI's. Let D be the set of 20 
carbon nuclei. Let R be a set containing two elements. 
Let cy1 and a2 be the weights of elements in R. Then 
for this case 
GF = 

Figure 14. A honeycomb lattice graph containing 54 vertices. 
The  characteristic polynomial of this graph can be obtained by 
using Frame's method (see section IVA). 

19 , "rJ: , L 

6 

7 

12 LJ 1 ,  

Figure 15. Porphine dianion. The SALC's of the pn  orbitals can 
be constructed by using combintorial methods (see Section I D ) .  

C2, etc. and, consequently, the characteristic polyno- 
mial. 

The computer program based on the above method 
was used to evaluate the characteristic polynomials of 
several graphs. To illustrate, consider the honeycomb 
lattice graph in Figure 14. The characteristic polyno- 
mial of this graph is given by expression 89. 

X54 - 72X5' + 2430X50 - 51 152X4' + 753867X46 - 
8 227 552X44 + 70 356 380X4' - 474 823 692X40 + 

2 589 615 333X3' - 11 556 300 564X36 + 
42 569 538 372X34 - 130 222 865 528X3' + 
332 069 146 453X30 - 707 192 500 956XZ8 + 
1 257 989 284XZ6 - 1 866 287 443 412X24 + 

2 301 545 596 335XZ2 - 2 347 222 219 224X'O + 
1 965 105 361 102X18 - 1337 106 330 756h16 + 

103 654 073 94OX'O - 25 479 629 340h8 + 
729 597 602 7O6Xl4 - 313 604 239 964X1' + 

4 438 832 481X6 - 508 728 588X4 + 33 696 516X' - 
960400 (89) 

B. Symmetry Adaptation 

In this section we review the use of GCCI's for the 
construction of symmetry-adapted linear combination 
of orbitals (refered to as SALC's by Cotton303) used in 
quantum calculations of symmetric molecules. The 
present author304 showed that GCCI's could be used to 
construct SALC's. Consider the p z  orbitals perpendi- 
cular to the plane of the molecule in Figure 15. All 20 
carbon p z  orbitals do not mix in any of the SALC's. 
The problem is to construct the SALC's for the por- 

-[2(a1 1 + a2)20 + 4(af + + 6 ( 4  + a;)" + 
16 

The coefficient of .:'cy2 in the above expression gives 
the number of patterns or the number of identity rep- 
resentations in each pattern. This is equal to 

0 

'[(qo) + 2(3] = 3 
16 

The classes of nuclei are 
C1 = {I, 2, 6, 7, 11, 12, 16, 17) 

C2 = (3, 5, 8, 10, 13, 15, 18, 20) (92) 

C3 = (4, 9, 14, 19) 

To construct the SALC's one looks at  the transforma- 
tion properties of vectors perpendicular to the plane of 
the molecule belonging to a class. A generating function 
for the irreducible representations in the class Ci can 
be obtained by finding the generating function re- 
stricted to Ci, with the following definition of PGx. Let 
di denote a vector centered on the atom di perpendi- 
cular to the plane of the paper. Then define 

where 

(94) 
- 1 if gdi  = d k  for some k 

' g =  i 1 otherwise 

C, denotes the set of vectors centered on the nuclei in 
the class C,. The generating function for the class C, 
is given by 

(95) 

where x is the character of the irreducible representa- 
tion T,. Expressions thus obtained for all irreducible 
representations of Ddh and for each equivalence class 
are shown in Table VII. The coefficient of ay-1a2 in 
each expression, where m = IC,I gives the number of 
times the irreducible representation r, occurs in the set 
C,. They are indicated in the last column of Table VII. 
The complete set of generating functions for all f s  in 
F is shown in Table VII, even though for the present 
problem only the coefficient of ap-1a2 is significant. 
However, the other coefficients do have combinatorial 
significance, viz., a typical coefficient cuplap in the 
generating function which corresponds to the irredu- 
cible representation r and the class C, represents the 
number of colorings of vectors with m, colors of the type 
1 and m2 colors of the type 2 that transform as the 
irreducible representation r and the class C ,  The 
projection operator which corresponds to each irredu- 

GFCJ(r,) = PG'[C,] ( ~ k  - Ea:) 
1 
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genealogical construction of spin functions321 can also 
be achieved by using Gel'fand states. 

The present author316 showed that GCCI's can be 
used to enumerate and construct Gel'fand states. We 
briefly review this here. 
As a result of the correspondence between the unitary 

group U(n) and the symmetric group S,, for a n particle 
problem one may use the symmetric group S,. Consider 
D as the set of these n particles and R as the possible 
spin states. Then each spin configuration of n particles 
can be considered as a map from D to R. The group 
S, divides the set of all maps from D to R into patterns. 
Each pattern contains exactly one identity represent- 
ation of s,. The spin configurations contained in each 
pattern form a reducible representation of S, which 
decomposes into irreducible representations of S,. 
These irreducible representations are precisely the 
generalized Young tableau or Gel'fand states formed 
by the possible spin states of the particles. This can 
be seen from the correspondence of unitary groups and 
symmetric groups. Consequently, Gel'fand states con- 
tained in each pattern can be generated by GCCI's. 

Let G be the symmetric group S,. Let w(r)'s be the 
weights of spin states in the set R. Then GFx with the 
character x generates the Gel'fand states formed by the 
spin states with the Young diagram associated with the 
irreducible representation whose character is x. 

Let us illustrate with an example. Consider the 
Gel'fand states associated with four particles which 
possess three spin states corresponding to the partition 
(3,l). The GCCI is given as 

TABLE VII. The Combinatorics of Symmetry Adaptation 
irreducible freq of 

representation class GF occurrence 
1 
2 
3 
4 
5 

6 

7 

8 

9 

10 
11 
12 
13 
14 
15 
16 
17 

18 
19 
20 

0 
0 
0 
0 
2 

1 

1 

1 

1 

0 
0 
0 
0 
0 
1 
0 
1 

1 
0 
0 

cible representation of p orbitals is applied on that class 
to obtain an orthogonal set of symmetry-adapted orib- 
tals. 

C. Configuratlon Interaction Calculations 

In recent years graph theoretical and combinatorial 
techniques have made significant impact on large scale 
configuration interaction calculations. One Qf the major 
developments in this area is the graphical unitary group 
approach to many electron c ~ r r e l a t i o n . ~ ~ ~ - ~ l ~  Pal- 
dus305-310 showed that the unitary group approach to 
electron correlation introduces significant simplifica- 
tions in the configuration interaction calculations and 
this approach speeds up the evaluation of symbolic 
formulas for CI matrix elements. Further, using the 
unitary group generators, the matrix elements can be 
constructed directly, thereby cutting down computa- 
tionally expensive step of constructing symbolic CI 
formulas. Shavitt311,312y317 has further expounded on the 
unitary group approach and developed the graphical 
unitary group method which can be applied to direct 
configuration interaction calculations (direct CI). 

The graphical unitary group approach (GUGA) is 
based on the notion of distinct row table (DRT) and its 
graph theoretical representation. Graph theory is also 
extremely useful here in pictorial visualization of matrix 
elements and computational techniques. 

Schaefer and c o - ~ o r k e r s ~ ~ ~ , ~ ~ ~  have developed com- 
puter programs based on GUGA which enable CI cal- 
culations involving a very large number of configura- 
tions. S~haefer 's~~O loop-driven GUGA programs can 
handle up to 1 million configurations. 

The bases of unitary group are known as Gel'fand 
states and have also been used by Matsen313 inde- 
pendently in spin-free quantum chemistry. The usual 

If al, a2, and a3 are the weights of three spin states, then 
GF is given by 

GFr3J] = -[3(al + a2 + aJ4 + 6(a1 + a2 + a3)'(a4 
1 

24 
+ CY; + a:) - 6 ( ~ ~ i f  + + ai) - 3(a? + + ~ t f ) ~ ]  (97) 

This on simplification yields 
.;a2 + &:a3 + ala; + a;a3 + ala; + aza; + a:.; + 

ataf + + 2aqa2a3 + 2ala;a3 + 2alazai (98) 

The total number of tableaus can also be obtained by 
replacing every xk by IRI in the cycle index of G with 
the appropriate character. In this case it is 

1 -[3*34 + 6 ~ 3 ~ * 3  - 6-3 - 3.323 = 15 
24 (99) 

The Gel'fand states thus generated are shown in Figure 
16. 

showed that generating func- 
tions can be obtained to generate and enumerate con- 
figurations themselves. It was further shown in ref 322 
that symmetry simplifications can be introduced in CI 
calculations induced by orbital degeneracies. The 
readers are referred to ref 322 for further details on this 
topic. 

The present 

v. Conclusion 

In this manuscript we reviewed applications of com- 
binatorics and graph theory to spectroscopy and 
quantum chemistry. The topics we reviewed include 



616 Chemical Reviews, 1985, Vol. 85, No. 6 Balasubramanian 

(2) Caley, A. Philos. Mag. 1857, 13, 19. 
(3) Cayley, A. Philos. Mag. 1874, 67, 444. 
(4) Cayley, A. Ber. Dtsch. Chem. Ges. 1875, 8, 1056. 
(5) Cayley, A. Am. J .  Math. 1881, 4, 266. 
(6) Pblya, G. Acta Math. 1937, 65, 145. 
(7) Redfield, J. H. Am. J .  Math. 1927, 49, 433. 
(8) Harary, F.; Palmer, E. M. 'Graphical Enumeration"; Aca- 

demic Press: New York, 1973. 
(9) Read, R. C. In "Chemical Applications of Graph Theory"; 

Balaban, A. T., Ed.; Academic Press: New York, 1976. 
(10) Robinson, R. W. J.  Combinatorial Theory 1970, 9, 327. 
(11) Sheehan, J. Can. J .  Math. 1967, 19, 792. 
(12) Williamson, S. G. J.  Combinatorial Theory 1970, 8, 163. 
(13) Williamson, S. G. J .  Combinatorial Theory 1971, 11, 122. 
(14) Merris, R. Linear Algebra and Applications 1980, 29, 255. 
(15) Henze, H. R.; Blair, C. M. J.  Am. Chem. SOC. 1931,53, 3052. 
(16) Henze, H. R.; Blair, C. M. J .  Am. Chem. SOC. 1931,53, 3077. 
(17) Henze, H. R.; Blair, C. M. J .  Am. Chem. SOC. 1933,55, 680. 
(18) Perry, D. J.  Am. Chem. SOC. 1932, 54, 2918. 
(19) Lunn, A. C.; Senior, J. K. J .  Phys. Chem. 1929, 33, 1027. 
(20) De Bruijn, N. G. In 'Applied Combinatorial Mathematics"; 

Beckenbach, E. F., Ed.; Wiley: New York, 1964. 
(21) Hill, T. L. J .  Chem. Phys. 1943, 11, 294. 
(22) Taylor, W. J. J.  Chem. Phys. 1943, 11, 532. 
(23) Rouvrav. D. H. J .  S. Afr. Chem. Inst. 1973. 26. 141. 

U 

Figure 16. The 15 Gel'fand states corresponding to the irredu- 
cible representation [3,1] of four particles possessing three spin 
states. The  Gel'fand states are enumerated by using the com- 
binatorial method outlined in section IVC. 

applications to NMR, molecular-spectroscopy, micro- 
wave and electric deflection experiments of weakly 
bound van der Waals complexes synthesized in molec- 
ular beam, NQR spectra of crystals exhibiting phase 
transitions, reaction topology, graph theoretical for- 
mulation of the structure of quantum chemistry, graph 
theory of gradient of nuclear charge densities, charac- 
teristic polynomials of graphs, graphical symmetry ad- 
aptation and graph theory, and CI calculations. Yet a 
variety of applications of graph theory to other areas 
of chemistry could not be reviewed because of the space 
limitation. Some of these applications include appli- 
cations to stereochemistry, molecular rearrangements 
and dynamical processes, chemical kinetics, logical 
structure of chemistry, statistical thermodynamics, 
computer-assisted structure elucidation, logic of organic 
synthesis and computer-assisted organic synthesis, 
electronic properties of inorganic cluster compounds, 
conjugated compounds, topological and other infor- 
mation indices, chemical nomenclature and notation, 
etc. Balasubramanian and c o - w o r k e r ~ ~ ~ ~  showed that 
a combinatorial problem known as the cell-growth 
problem has potential applications in the enumeration 
of carcinogenic benzenoid hydrocarbons and in the 
construction of potentially carcinogenic bay regions (see 
also ref 324). Many of these applications have been 
already reviewed before, although the latest develop- 
ments on this topic are yet to be reviewed. Ugi and 
c o - w o r k e r ~ ~ ~ ~  have recently reviewed the use of group 
theory and related topics in stereochemistry. Bader326 
has recently provided a concise review of applications 
of topology to molecular structure. Kerber and James327 
have reviewed the methods of representation theory of 
symmetry groups which has a number of chemical ap- 
plications. Combinatorial matrices known as Hada- 
mard matrices find important applications in Hada- 
mard transform s p e o t r o s c ~ p y . ~ ~ ~  Numerous papers 
have appeared on these and related topics in the 
chemical literature. This area provides significant op- 
portunities for further investigations. There are many 
problems in this area which are yet to be solved. It is 
hoped that this review would attract many new inves- 
tigators into this relatively new branch of mathematical 
chemistry. 
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